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Technical Challenges to Simulate Charged System

We consider N classical point particles in a two-dimensional box.
Particles interact via 1

r Coulomb potential.
Coulomb interaction does not decay within half the lattice distance, unlike short-range
interactions.
Long-range nature prohibits the use of a cutoff distance for accuracy.
Large number of particles required, demanding significant computational power.

The interaction energy arising from the Coulomb interaction between the particles is
expressed as:

E =
1

4πε0

N
∑′

i, j

qiq j

|ri − r j|
(1)

where the prime on the sum indicates that i ̸= j.
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Consequences of Alternating Charges

We must use alternating charge convention or a charge-neutralizing uniform
background to maintain charge neutrality in the system. In the thermodynamic limit,
this prevents the system energy from diverging.
Consequently, the sum in Eq. 1 is identified as a conditionally convergent sum.
To understand the convergence problem, we calculated pair-wise distances between all
particles to simulate square and triangular lattices (Fig. 1) under fixed density
condition (ρ = 1).
The energy per particle in these systems should ideally converge to a fixed energy value
known as the Madelung Energy value of the lattice.
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(a) Square Lattice (b) Triangular Lattice

Figura 1: Energy per particle in (a) square lattice and (b) triangular lattice

The sum converges very slowly to the Madelung constant values of the lattice. For example,
the Madelung constant value for the triangular lattice is MC ∼ −1.9605.
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Convergence of Ewald Summation

Convergence
Ewald summation method aims to compute electrostatic potentials and forces in periodic
systems. The real-space and Fourier-space parts of the Ewald sum converge absolutely.

Conditional Convergence
The direct Coulomb sum of the alternating charges is conditionally convergent.

Example
Consider the series:

∞
∑

n=1

(−1)n+1

n

This is the alternating harmonic series, which is conditionally convergent.
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Eliminating Boundary Effects

To eliminate boundary effects, we must consider the bulk thermodynamic limit.
Conventionally, this is achieved by replicating the unit cell configuration into image
cells and surrounding the main unit cell with these image cells.
This technique preserves both the translational and rotational symmetries.

E =
1

4πε0

∑

n

N
∑′

i, j

qiq j

|ri − r j + n · L|
(2)

Figura 2: Illustration of achieving the bulk limit condition
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Convergence Challenges and Acceleration Methods

The unit cell is denoted as layer zero, with other layers representing image cells around
the unit cell. Layer L contains a total of 2L(L + 1) image cells.
Despite using this method to eliminate boundary effects, the convergence of the energy
value per particle to the Madelung constant is slow.
Additionally, the computational cost is very high due to the large number of image cells
required.
To achieve the required accuracy of error order O (10−4), a very large number of
particles is necessary.

Convergence Acceleration Methods:
Ewald summation
Multipole method
NEFT-based algorithm (Newly Developed)
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Summation Trick

Ewald summation, developed by Paul Peter Ewald, is a convergence acceleration technique
where we divide the sum into two parts introducing a foreign function as the coefficient.
This technique also ensures the sum to be absolutely convergent.

∑ 1
|r|
=
∑ f (r)
|r|
+
∑ 1− f (r)

|r|
(3)

Now, we suitably choose a rapidly decreasing function as f (r) which decreases faster than
the increment of the 1

|r| function with respect to r. The most used function for this case is
the complementary error function denoted by erfc(r) = 1− erf(r) with the expression for the
error function as

erf(x) =
2
p
π

∫ x

0

e−t2
d t.

Then we evaluate one part in real space and another part in Fourier space.
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Decomposition of Coulomb Potential

The Coulomb potential for a single unit positive charge is:

φ(r) =
1
r

(4)

This function has two important properties:
For very small r → 0, the potential goes to extreme high values, indeed becomes
positive infinity at r = 0.
On the other hand, it diminishes at a slow rate for large r, prohibiting the
implementation of any cutoff radius due to a large amount of truncation error.

To handle this, we break up the potential into two parts, each following one property
exclusively:

φ(r) = φshort(r) +φlong(r) (5)
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For a given window function W (r) which is unity for small r but falls rapidly to zero for
large r, the two functions φshort(r) and φlong(r) can be expressed as:

φshort(r) =W (r)φ(r)

φlong(r) = [1−W (r)]φ(r)

Hence, the potential energy contribution:

Φshort(r) =
∑

n

φshort(|r⃗ − r⃗n|) (6)

Φlong(r) =
∑

n

φlong(|r⃗ − r⃗n|) (7)

where n= (nx , ny , nz) is a three-dimensional lattice vector.
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Short-ranged and Long-ranged potentials

Short Ranged Potential Term (Φshort(r))
Decays rapidly with minimal contribution from large r.
Evaluate sum in real space with high accuracy.

Long Ranged Potential Term (Φlong(r))
Does not converge in real space.
Evaluate sum in Fourier space:

Φ̃long(ν) =
∑

ν

φ̃long(ν)

Here, ν is the Fourier variable conjugate to n.

Simultaneous use of real and Fourier spaces allows greater accuracy with fewer summation
steps.
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Error and Complementary Error Function

Gaussian Integral
The area under a Gaussian is represented as:

∫ ∞

−∞
e−t2

d t =
p
π

We express the standard integral as:

2
p
π

∫ ∞

0

e−t2
d t = 1

By truncating the upper limit to a finite value x , we get the error function:

er f (x) =
2
p
π

∫ x

0

e−t2
d t
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Error and Complementary Error Function

The complementary error function is denoted as:

er f c(x) = 1− er f (x)

=
2
p
π

∫ ∞

x
e−t2

d t

The error function rises rapidly to unity when x becomes large. On the other hand, the
complementary error function steeply falls to zero for x → 0. So the complementary error
function er f c(x) is a suitable choice for the window function W (r).
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Figura 3: a) Yellow curve represents the error function and the green curve represents the
complementary error function. b) Here the red curve denotes the slow falling of the Coulomb
potential, the blue curve represents the short ranged potential term along with the green curve
which represents the long ranged potential term.
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Potential Energy and Convergence

We consider N point charges located at positions r1, r2, . . . , rN , each with charges
q1, q2, . . . , qN respectively.
The potential energy generated at position r by any ion at ri due to its charge qi is:

φi(r) =
qi

|r − ri|
,

while the total potential energy due to all ions is:

φ(r) =
N
∑

i=1

qi

|r − ri|
.
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Due to the long-range nature of Coulombic interaction, convergence of the total energy
becomes problematic. To address this, we consider periodic image cells around the main
unit cell for convergence acceleration. Under this situation, the potential field terms add up
due to the contribution from the image charges and can be expressed as:

φ(r) =
∑

n

N
∑

j=1

q j

|r − r j + n · L|
.

Figura 4: Construction of image cells in 2D
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Excluding Self-interaction Term

In real situations, we do not consider the self-interaction term arising from the interaction
of a point charge with itself.
We define the potential field generated by all charges excluding the self-contribution as:

φ[i](r)≡ φ(r)−φi(r) =
∑

n

N
∑′

j=1

q j

|r − r j + n · L|

where the ′ symbol omits the term j = i when n= 0.
The energy of the system is then given by:

E =
1
2

N
∑

i=1

qiφ[i](ri)

We introduce a factor of 1
2 to overcome the double counting contribution.
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Charge Distribution and its Representation

We consider point charges situated at specific points in a three-dimensional lattice. These
point charges can be represented by delta functions centered at the lattice points.
The charge density for a point charge qi is given by:

ρi(r) = qiδ(r − ri)

The Poisson equation relates the potential field generated by the charge density:

∇2φi(r) = −
ρi(r)
ε0

We can write the potential field in continuous notation as:

φi(r) =
1

4πε0

∫

ρi(r ′)
|r − r ′|

d3r ′
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Total Potential Field and Charge Distribution

Hence, the total potential field generated due to all charges, including image charges but
excluding self-interaction, is written as:

φ[i] =
1

4πε0

∑

n

N
∑′

j=1

∫

ρ j(r ′)

|r − r ′ + n · L|
d3r ′

We can add and subtract a normal charge distribution at each point charge location
without any loss of generality. So, we write the charge distribution as:

ρi(r) = qi [δ(r − ri)− N(r − ri ,σ)] + qiN(r − ri ,σ)

= ρS
i (r) +ρ

L
i (r)
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Charge Distribution and Potential Field Splitting

Where N(r − ri ,σ) =
1

(2πσ3)
3
2

e−
|(r−ri )|

2

2σ2 is the normal charge distribution with spread σ.

Note that ĺımσ→0 N(r,σ) = δ(r).
We can split the potential fields as follows:

φi(r) = φ
S
i (r) +φ

L
i (r)

φS
i (r) =

qi

4πε0

∫

δ(r − r ′)− N(r − r ′,σ)
|r − r ′|

d3r ′

φL
i (r) =

qi

4πε0

∫

N(r − r ′,σ)
|r − r ′|

d3r ′
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Splitting of Potential Field and Coulomb Interaction Energy

As we are interested in the potential field generated by ions excluding the self-interaction
due to charge i, the potential field can be split as:

φ[i](r) = φ
S
[i](r) +φ

L
[i](r)

This also leads to the splitting of the Coulomb interaction energy term, which is expressed
in terms of potential field terms:

E =
1
2

N
∑

j=1

q jφ
S
[i](ri) +

1
2

N
∑

j=1

q jφ
L
[i](ri)

=
1
2

N
∑

j=1

q jφ
S
[i](ri) +

1
2

N
∑

j=1

q jφ
L(ri)−

1
2

N
∑

j=1

q jφ
L
i (ri)

= ES + E L + EC
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Gaussian Charge Distribution

The scalar field produced by the normal charge distribution satisfies the Poisson equation:

∇2φN (r) = −
N(r)
ε0

Assuming spherical symmetry, we write:

1
r
∂ 2(rφN (r))
∂ r2

= −
1

ε0(2πσ3)
3
2

e−
r2

2σ2

∂ (rφN (r))
∂ r

= −
1

ε0(2πσ3)
3
2

∫ ∞

r
e−

r2

2σ2 dr

=
σ2

ε0(2πσ3)
3
2

e−
r2

2σ2

rφN (r) =
σ2

ε0(2πσ3)
3
2

∫ r

0

e−
r2

2σ2 dr
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Gaussian Charge Distribution (Continued)

We have already noted that er f (x) = 2p
π

∫ x
0 e−t2

d t, which implies:

er f
�

r
p

2σ

�

=
2
p
π

∫
rp
2σ

0

e−t2
d t

Hence, we can write the potential generated due to Gaussian charges as:

φN (r) =
s

π

2
σ2

ε0(2πσ3)
3
2 r

er f
�

r
p

2σ

�

φN (|r − ri|) =
1

4πε0|r − ri|
er f
� |r − ri|p

2σ

�
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Short Ranged Interaction Term

We can write φS
i as:

φS
i (r − ri) =

qi

4πε0

1
|r − ri|

�

1− er f
� |r − ri|p

2σ

��

=
qi

4πε0

1
|r − ri|

er f c
� |r − ri|p

2σ

�

=
qi

4πε0

1
|r − ri|

er f c (α|r − ri|)

Where α=
1
p

2σ
.

φL
i (r − ri) =

qi

4πε0

1
|r − ri|

er f (α|r − ri|)
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Convergence of Short Ranged Potential Term

The short-ranged potential term converges fast when image cells are considered together.
Now, we can also write the contribution of all charges, including the image cells, as:

φS
[i](r − ri) =

1
4πε0

∑

n

N
∑′

j=1

q j

|r − ri + n.L|
er f c (α|r − ri + n.L|)

The energy contribution for this term is:

ES =
1
2

N
∑

i=1

qiφ[i](ri)

ES =
1
2

1
4πε0

∑

n

N
∑

i=1

N
∑′

j=1

qiq j

|ri − r j + n.L|
er f c
�

α|ri − r j + n.L|
�
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Need for Self-Interaction Term

When Needed:
In simulations involving point charges to prevent divergence in energy calculations.
When particles are treated as point charges and no other computational techniques are
used to implicitly account for self-interaction effects.

When Not Needed or Omitted:
When particles are modeled with a finite size or other computational techniques address
self-interaction effects.
In systems where the self-interaction energy is negligible compared to other contributions.
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Self Interaction Term

EC(r) =
1
2

N
∑

i=1

qiφ
L
i (ri)

=
1
2

1
4πε0

ĺım
R→0

N
∑

i=1

qi

hqi

R
er f (αR)
i

=
1
2
α

4πε0

N
∑

i=1

q2
i ĺım

x→0

�

er f (x)
x

�

, x = αR

=
α

p
π4πε0

N
∑

i=1

q2
i
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Long Range Interaction Term

φL
i , the long-range potential term, decays slowly in real space. To ensure faster

convergence, it’s crucial to evaluate its contribution in reciprocal space.
The total charge density is:

ρL(r) =
∑

n

N
∑

i=1

ρL
i (r + n.L)

Since the potential field and charge density are periodic functions of the lattice vector, we
can obtain their Fourier-transformed components:

φ̃(k) =

∫

V
d3rφ(r)e−ik.r

ρ̃(k) =

∫

V
d3rρ(r)e−ik.r
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Poisson Equation in Reciprocal Space

φ(r) =
1
V

∑

k

φ̃(k)eik.r (8)

ρ(r) =
1
V

∑

k

ρ̃(k)eik.r (9)

Here, the summation is over reciprocal lattice vectors kx , ky , kz.
The Poisson equation relating potential field and charge density is:

∇2φL(r) = −
ρL(r)
ε0

(10)
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∇2φL(r) = −k2φL(r) = −
ρL(r)
ε0

(11)

In reciprocal space, it gives:

k2φ̃L(k) =
ρ̃L(k)
ε0

(12)

Please keep this equation in mind: φ̃L(k) =
ρ̃L(k)
k2ε0

Note, that the charge density in reciprocal space is

ρL(r) =
∑

n

N
∑

i=1

qiN (|r − ri + n.L|,σ) (13)
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Long Ranged Interaction Term

In Fourier space, the charge density becomes

ρ̃L(k) =

∫

V
ρL(r)e−ik.r d3r

=

∫

V
d3r

N
∑

i=1

qiN (|r − ri + n.L|,σ) e−ik.r (14)

=
N
∑

i=1

qi

∫

1

(2πσ2)
3
2

e
|r−ri |

2

2σ2 e−ik.|r−ri |e−ik.ri d3r

=
N
∑

i=1

qie
−ik.ri

∫

1

(2πσ2)
3
2

e−
−y2

2σ2 −ik.y d3 y

= qi

N
∑

i=1

e−ik.ri e−
σ2k2

2 (15)
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Inverse Fourier Transformation

Using Eq. 10 and inverse Fourier transformation,

φ̃L(k) =
1
ε0

N
∑

i=1

qi

k2
e−ik·ri e−

σ2k2
2 (16)

Therefore, in real space, the long-rage interaction term is

φL(r) =
1
V

∑

k ̸=0

φ̃L(k)eik·r

=
1

Vε0

∑

k ̸=0

N
∑

i=1

qi

k2
e−ik·(r−ri)e−

σ2k2
2 (17)
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The energy contribution from the long-range potential:

E L =
1
2

N
∑

j=1

q jφ
L(r j)

=
1

2Vε0

∑

k ̸=0

N
∑

i=1

N
∑

j=1

qiq j

k2
eik.(ri−r j)e−

σ2k2
2 (18)

Combining all three energy terms, the total Coulomb interaction energy becomes

E =ES + E L − EC

=
1
2

1
4πε0

∑

n

N
∑

i=1

N
∑′

j=1

qiq j

|ri − r j + n.L|
er f c
�

α|ri − r j + n.L|
�

+
1

2Vε0

∑

k ̸=0

N
∑

i=1

N
∑

j=1

qiq j

k2
eik.(ri−r j)e−

σ2k2
2 −

α
p
π4πε0

N
∑

i=1

q2
i (19)
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Convergence based on layer numbers
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Figura 5: Achieving the bulk limit condition (2D square lattice Medelung constant = -1.10609)
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